Book: An Introduction To Statistical Learning: With Appli...
Mismo precio en 6 cuotas de
Precio sin impuestos nacionales:
Solo en CABA y zonas de GBA
Comprando dentro de las próximas 7 h 41 min
Disponible 12 días después de tu compra

+10mil ventas
EL BAZAR DIGITAL
Tienda oficial de Mercado Libre
+10mil Seguidores
MercadoLíder Platinum
¡Uno de los mejores del sitio!
+10mil
Ventas concretadas
Brinda buena atención
Despacha sus productos a tiempo
Medios de pago
Cuotas sin Tarjeta
Tarjetas de crédito
Tarjetas de débito
Efectivo

Características del producto
Características principales
Título del libro | An Introduction To Statistical Learning: With Applications In Python (springer Texts In Statistics) |
---|---|
Autor | Gareth James (Author), Daniela Witten (Author), Trevor Hastie (Author), Robert Tibshirani (Author) |
Idioma | Inglés |
Editorial del libro | Springer |
Tapa del libro | Dura |
Marca | Springer |
Modelo | 3031387465 |
Otros
ISBN | 9783031387463 |
---|
Descripción
- ANTES DE COMPRAR PREGUNTE FECHA DE ENTREGA.
- ENVIAMOS POR MERCADOENVIOS
- PUEDE RETIRAR POR AHORA SOLO POR QUILMES, MICROCENTRO ESTA CERRADO, POR ESO...
- EN CABA (CAPITAL FEDERAL) ENVIAMOS SIN CARGO ESTE PRODUCTO.
- FORMA DE PAGO : MERCADOPAGO
- HACEMOS FACTURA A.
- ELBAZARDIGITAL VENDEDOR PLATINUM
- TODOS NUESTROS PRODUCTOS EN:
https://eshops.mercadolibre.com.ar/elbazardigital
-X-X-X-
- SOMOS IMPORTADORES DIRECTOS, ESTE PRODUCTO SE COMPRA Y SE IMPORTA DESDE ESTADOS UNIDOS, ESTO IMPLICA QUE USTED ESTA COMPRANDO EL MISMO PRODUCTO QUE COMPRARÍA UN CLIENTE DE ESE PAÍS.
- ANTES DE REALIZAR UNA CONSULTA, VISUALICE TODAS LAS IMAGENES DEL PRODUCTO.
- Titulo de Catalogo Original :
An Introduction To Statistical Learning: With Applications In Python (springer Texts In Statistics)
an introduction to statistical learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. this book presents some of the most important modeling and prediction techniques, along with relevant applications. topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. color graphics and real-world examples are used to illustrate the methods presented. this book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. four of the authors co-wrote an introduction to statistical learning, with applications in r (islr), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. one of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the r scientific computing environment. however, in recent years python has become a popular language for data science, and there has been increasing demand for a python-based alternative to islr. hence, this book (islp) covers the same materials as islr but with labs implemented in python. these labs will be useful both for python novices, as well as experienced users.
-o-o-o-
Garantía del vendedor: 90 días
Preguntas y respuestas
¿Qué querés saber?
Preguntale al vendedor
Nadie hizo preguntas todavía.
¡Hacé la primera!